Electron-phonon interactions in selected correlated hydrogen systems within the Exact Diagonalization Ab Initio approach

Andrzej Biborski^{1*}, Andrzej P. Kądzielawa², Józef Spałek^{1,2}

¹Akademickie Centrum Materiałów i Nanotechnologii, AGH Akademia Górniczo-Hutnicza, Al. Mickiewicza 30, PL-30-059 Kraków, Poland ²Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, PL-30059 Kraków, Poland

*andrzej.biborski@agh.edu.pl

Kraków, December 5, 2014

1 / 21

December 5, 2014

Workshop on ab initio phonon calculations	Kraków,
---	---------

4th

Outline

2 EDABI Method

Basics

Single Particle Basis and Procedure Simplified Hamiltonian Notation

3 *H*₂ molecule

Electronic system

Electron-ion coupling

4 Technical remarks

Gaussians contraction and complexity

- **5** $(H_2)_2$ molecule
- (H₂)_n chain
 Conductivity (?)
 Phonons ideas

4th Workshop on ab initio phonon calculations

Objective

Objective

Hydrogen metallization (Wigner and Huntington 1935)

- molecular hydrogen crystal
- molecular 1d and 2d systems - preliminary models in the rigourous treatment

Why?

- Lack of experimental evidence (high pressures)
- Contradictory theoretical results

4th Workshop on ab initio phonon calculations

How?

Exact Diagonalization Ab Initio approach.

- Electronic correlations consistently taken into account
- Combine first and second quantization pictures

Questions

• Phonons and electron-phonon couplings in the EDABI?

Kraków, December 5, 2014 3 / 21

- 4 週 ト - 4 三 ト - 4 三 ト

э

EDABI Method

Basics

Hamiltonian

We have Hamiltonian given in the second quanitzation picture:

$$\mathcal{H} = \sum_{i,\sigma} \epsilon_i \hat{n}_{i\sigma} + \frac{1}{2} \sum_{\sigma, i \neq j} t_{ij} \hat{c}^{\dagger}_{i\sigma} \hat{c}_{j\sigma} + \sum_{\substack{i,j,k,l \\ \sigma, \sigma'}} V_{ijkl} \hat{c}^{\dagger}_{i\sigma} \hat{c}^{\dagger}_{j\sigma}, \hat{c}_{l\sigma}, \hat{c}_{k\sigma} + \mathcal{V}_{c-c}$$
(1)

Microscopic Parameters

And microscopic parameters as integrals over single-particle wave functions

$$T_{ij} = \left\langle w(\mathbf{r})_i \right| - \nabla^2 - \sum_{k=1}^n \frac{2}{|\mathbf{r} - \mathbf{R}_k|} |w(\mathbf{r})_j \right\rangle$$
(2)
$$V_{ijkl} = \left\langle w(\mathbf{r})_i w(\mathbf{r}')_j \right| \frac{2}{|\mathbf{r} - \mathbf{r}'|} |w(\mathbf{r}')_k w(\mathbf{r})_l \right\rangle$$

Note

We combine first and second quantization pictures

4th Workshop on ab initio phonon calculations

Kraków, December 5, 2014 4 / 21

Basis

We build our basis by orthogonalizing Slater-type orbitals Ψ_i^{α} :

$$\langle w_{\pi_i(j)}(\mathbf{r}) | w_i(\mathbf{r}) \rangle = \delta_{i\pi_i(j)},$$
 (3)

$$w_i \left(\mathbf{r} - \mathbf{R}_i\right) = w_i \left(\mathbf{r}\right) = \sum_{j=0}^{Z} \beta_j \Psi^{\alpha}_{\pi_i(j)} \left(\mathbf{r}\right), \qquad (4)$$

where π_i is the Z-neighbors mapping function for the node *i*, where $\pi_i(0) = i$.

Procedure

The core of *EDABI*: since Hamiltonian depends on $\left\{ \left\{ T_{ij} \right\}, \left\{ V_{ijkl} \right\} \right\}$, it does on $\left\{ w_i^{\alpha} \right\}$, and the ground state(-s) might be found in terms of diagonalization in a *n*-particle Fock space supplied with the optimization procedure via $\{\alpha\}$:

$$E_{G}\left[\left\{w_{i}^{(\alpha)}\right\}\right] = \left\langle n | \mathcal{H}^{\alpha} | n \right\rangle \tag{5}$$

w) Q (

Detailed description

J. Spałek et al., J.Phys.: Condens. Matter 19 (2007) 255212 (43pp)

Hamiltonian

Simplified hamiltonian notation

$$\mathcal{H} = \sum_{m} \sum_{ij} \Xi_{m;ij} \hat{O}_{m;ij},\tag{6}$$

In general we take Hubbard hamiltonian with *all* two-body interaction, where $\Xi_{m;ij} \in \{\epsilon_i, t_{ij}, U_i, K_{ij}, V_{ij}, J_{ij}\}$ and $\hat{O}_{m;ij}$ is a generic notation of the operator part (i.e. $\hat{O}_{t;ij} = \sum_{\sigma} \hat{c}_{i\uparrow}^{\dagger} \hat{c}_{i\sigma}$)

4th Workshop on ab initio phonon calculations

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

H_2 molecule

H_2 basis

$$w_i(\mathbf{r}) = eta_0 \Psi_i(\mathbf{r}) + eta_1 \Psi_{\overline{i}}(\mathbf{r})$$

Microscopic parameters

$$\Xi_m = \Xi_m(R,\alpha).$$
(8)

Rinteratomic distance(set) α inverse function size(variational parameter)

Exact results

See: J. Spałek, R. Podsiadły, W. Wójcik, A. Rycerz, PRB **61**, 15676 (2000); Andrzej P. Kądzielawa, A. Bielas, M. Acquarone, A. Biborski, M. M. Maśka, J. Spałek, New Journal of Physics 2014

4th Workshop on ab initio phonon calculations

(7)

Electronic system

Figure : **TL**: energies of the spin-triplets ($E_1 = E_2 = E_3$) and the spin-singlets (E_{\pm} , E_6) versus the interionic distance R, **TR**: the optimal inverse wave-function size α versus the interionic distance R, **B**: microscopic parameters versus the interionic distance R

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Electron-ion coupling

Electron-ion coupling

Simplified hamiltonian notation

$$\mathcal{H} = \sum_{i} \Xi_{i} \hat{O}_{i}, \tag{9}$$

 $\Xi_i \in \{\epsilon, t, U, K, V, J\}, \ \hat{O}_i \text{ is a generic notation of the operator part}$ of the hamiltonian (i.e. $\hat{O}_t = \hat{c}_{2\uparrow}^{\dagger} \hat{c}_{1\uparrow} + \hat{c}_{1\uparrow}^{\dagger} \hat{c}_{2\uparrow} + \hat{c}_{2\downarrow}^{\dagger} \hat{c}_{1\downarrow} + \hat{c}_{1\downarrow}^{\dagger} \hat{c}_{2\downarrow})$

Electron-ion coupling

$$\delta \mathcal{H} = \sum_{i} \delta \Xi_{i} \hat{O}_{i} = \sum_{i} \xi_{i} \delta R \hat{O}_{i}, \qquad (10)$$

where $\xi_i = \delta \Xi_i / \delta R$.

4th Workshop on ab initio phonon calculations

Kraków, December 5, 2014 10 / 21

Figure : Coupling constants ξ_i versus intersite distance *R*.

Results

$$R_B = 1.43042(1.4010) a_0,$$

$$E_B = -2.29587(-2.33221) Ry,$$

$$E_{ZPM} = 0.024072(0.02) Ry.$$

Full derivation

APK et al., New Journal of Physics 2014

Gaussian contraction

In general the V_{ijkl} integrals are hardly to obtain analytically (lack of/low symmetries). It is not the case if Gaussian contraction is applied:

$$\Psi_i^{1s}(\vec{r}) \approx \sqrt{\frac{\alpha^3}{\pi}} e^{-\alpha |\vec{r} - \vec{a}_i|} \approx \alpha^{3/2} \sum_{a=0}^n \left(\frac{2\alpha^2 \Gamma_a^2}{\pi}\right)^{3/4} e^{-\alpha^2 \Gamma_a^2 |\vec{r} - \vec{a}|^2} \qquad (11)$$

Computational complexity

Computational effort for diagonalization is negligible for small systems, V_{ijkl} is **bottleneck** if satisfactory accuracy and/or significant number of integrals ($\propto 10^2 \div 10^3$) are desired since its calculation complexity is $O(N_G^4 \times Z^4)$. Where N_G is a number of Gaussians used.

Two level parallelization and Qmt

4th Workshop on ab initio phonon calculations

 < □ > < □ > < □ > < ≡ > < ≡ > < ≡ > ≡

 Kraków, December 5, 2014
 13 / 21

$(H_2)_2$ molecule

Figure : **TL**: model of two H_2 molecules, **TR**: the difference of energies of the $(H_2)_2$ system an that of the free molecules (per molecule) vs. intermolecular distance *a*, **B**: microscopic parameters vs. intermolecular distance *a*

(4) E > (4) E >

э

 $(H_2)_n$ chain

$(H_2)_n$ chain

Figure : Molecular chain scheme.

Purpose

- Hydrogen "molecular crystal" model
- Real space treatment posibility to study phonon spectra in terms of direct method
- · All with the correllations directly taken into account

 $(H_2)_n$ chain

Figure : **TL**: the optimal inverse wave-function size α vs. intermolecular distance *a*, **TR**: the energy of the $(H_2)_n$ (per molecule) vs. intermolecular distance *a* **C**,**B**: single-particle wave function (orthogonalized for $(H_2)_3$) in *xy*-plane

- 4 週 ト - 4 三 ト - 4 三 ト

$(H_2)_n$ chain

Electron density

Kraków, December 5, 2014 17 / 21

• • = • • = •

7 / 21

Conductivity (?)

Possibility of conductivity

Correlation functions (n = 1)

$$\left\langle 2e^{-} \operatorname{per} H_{2} \right\rangle = \left\langle \sum_{i\nu} \hat{n}_{i\uparrow}^{\nu} \hat{n}_{i\downarrow}^{\nu} \left(1 - \hat{n}_{i\uparrow}^{\bar{\nu}}\right) \left(1 - \hat{n}_{i\downarrow}^{\bar{\nu}}\right) \right\rangle$$
 (12)

$$\left\langle 3e^{-} \operatorname{per} H_{2} \right\rangle = \left\langle \sum_{i \nu \sigma} \hat{n}_{i \uparrow}^{\nu} \hat{n}_{i \downarrow}^{\nu} \hat{n}_{i \sigma}^{ar{
u}} \left(1 - \hat{n}_{i \bar{\sigma}}^{ar{
u}} \right) \right\rangle$$
(13)

$$\langle 4e^{-} \text{per } H_2 \rangle = \left\langle \sum_{i\nu} \hat{n}^{\nu}_{i\uparrow} \hat{n}^{\nu}_{i\downarrow} \hat{n}^{\bar{\nu}}_{i\uparrow} \hat{n}^{\bar{\nu}}_{i\downarrow} \right\rangle$$
 (14)

Figure: Averages of operator sums above vs. intermolecular distance *a*

4th Workshop on ab initio phonon calculations

Kraków, December 5, 2014 18 / 21

4 3 4 3 4 3 4

э

Direct method

Idea: Direct method in EDABI

- Real space calculations we can move ions (protons) and compute ΔE for each displacement
- Apply adiabatic approximation
- Impose harmonic approximation and calculate force constants $\Phi^{ij}_{\mu\nu} = \frac{\delta E^{ij}_{\mu\nu}}{\delta^i \mu \delta^j \nu} \text{ numerically}$

Lost in the forrest...

We need to calculate Hellmann – Feynman forces to build dynamic matrix. How to do that? Some attempts were done but without desired results though further perspectives promising.

Summary

First- and second-quantization language

- successful combination of both pictures
- full symmetry **not** required for calculation

H_2 chain

- zero-point motion estimated for *H*₂ molecule
- description of one-dimensional molecular crystal

To do

- phonon spectra for molecular and atomic crystals
- electron-phonon couplings
- inclusion of 2s and 2p orbitals

4th Workshop on ab initio phonon calculations

To do

- more configurations of *H*₂ crystals
- other methods of obtaining energy

Kraków, December 5, 2014 20 / 21

A lot of to do, see:

- "Unexpectedly high pressure for molecular dissociation in liquid hydrogen by electronic simulation", G. Mazzola et al., Nature Communications (2014)
- "Fate of density functional theory in the study of high-pressure solid hydrogen", S. Azadi et al., Phys. Rev. B 88, 014115 (2013)

Thank you!

4th Workshop on ab initio phonon calculations

Kraków, December 5, 2014 21 / 21

A = A = A

Suplement

Hamiltonian

Hamiltonian

$$\begin{aligned} \mathcal{H} &= \sum_{i} \epsilon_{i} \hat{n}_{i} + \sum_{ij\sigma} t_{ij} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{i} U_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} - \sum_{ij} J_{ij} \mathbf{S}_{i} \mathbf{S}_{j} \quad (15) \\ &+ \frac{1}{2} \sum_{ij} \left(K_{ij} - \frac{J_{ij}}{2} \right) \hat{n}_{i} \hat{n}_{j} + \sum_{ij} J_{ij} \hat{c}_{i\uparrow}^{\dagger} \hat{c}_{i\downarrow}^{\dagger} \hat{c}_{j\downarrow} \hat{c}_{j\uparrow} \\ &+ \sum_{ij\sigma} V_{ij} \hat{n}_{i\sigma} \left(\hat{c}_{i\bar{\sigma}}^{\dagger} \hat{c}_{j\bar{\sigma}} + \hat{c}_{j\bar{\sigma}}^{\dagger} \hat{c}_{i\bar{\sigma}} \right), \end{aligned}$$

where $\hat{c}_{i\sigma}$ and $\hat{c}_{i\sigma}^{\dagger}$ are the fermionic operators of annihilation and creation of the electron with spin σ on 1s orbital of hydrogen atom $i \mod 2$ in H_2 molecule $\lfloor \frac{i}{2} \rfloor$.

ヘロト 不得 とうき とうとう ほう

Computing

Two level parallelization

Figure: General approach to parallelization of microscopic parameters calculation.

э

Time consumption

Maximal speed-up (first- and second-level) defined as:

$$f_{FL+SL}^{max}(M) = \frac{t_{FL+SL}(M)}{t_{FL}(M=1)} \quad (16)$$

Figure : Maximal speed-up factor for p = 15 Gaussians vs. number of nodes M.

4th Workshop on ab initio phonon calculations

Kraków, December 5, 2014 24 / 21

э

Wave functions

Slater 1s wave functions (approximated by series of p Gaussians.

$$\Psi_{i}^{\alpha}\left(\mathbf{r}\right) = \sqrt{\frac{\alpha^{3}}{\pi}} e^{-\alpha|\mathbf{r}-\mathbf{R}_{i}|} \approx \alpha^{\frac{3}{2}} \sum_{a=1}^{p} B_{a} \left(\frac{2\alpha^{2}\Gamma_{a}^{2}}{\pi}\right)^{\frac{3}{4}} e^{-\alpha^{2}\Gamma_{a}^{2}|\mathbf{r}-\mathbf{R}_{i}|^{2}}.$$
(17)

- 3

Table : The numerical values of coefficients in Taylor series of ground-state energy. Up to the term $E_B^{(6)}$ all of the derivatives are calculated analytically. Orders seventh-ninth (marked by an asterisk) were calculated numerically due to complicated analytical expression for ground-state energy.

$E_B^{(1)}\left(\frac{Ry}{a_0}\right)$	0.0
$\frac{1}{2!}E_B^{(2)}\left(\frac{Ry}{a_0^2}\right)$	0.430045
$\frac{1}{3!}E_B^{(3)}\left(\frac{Ry}{a_0^3}\right)$	-0.464021
$\frac{1}{4!}E_B^{(4)}\left(\frac{Ry}{a_0^4}\right)$	0.354584
$\frac{1}{5!}E_B^{(5)}\left(\frac{Ry}{a_0^5}\right)$	-0.253393
$\frac{1}{6!}E_B^{(6)}\left(\frac{Ry}{a_0^6}\right)$	0.174863
$\frac{1}{7!}E_B^{(7)}\left(\frac{Ry}{a_0^7}\right)^*$	-0.119178
$\frac{1}{8!}E_B^{(8)}\left(\frac{R_y}{a_0^8}\right)^*$	0.0817586
$\frac{1}{9!}E_B^{(9)}\left(\frac{Ry}{a_0^9}\right)^*$	-0.0563837

Table : The values (in atomic units) of the microscopic parameters of H_2 Hamiltonian and the electron-ion coupling constants at the hydrogen-molecule equilibrium ($R = R_B$ and $\alpha = \alpha_B$).

microscopic paramters (Ry)		coupling constants (Ry/a_0)		
ϵ	-1.75079	ξ_{ϵ}	0.00616165	
t	-0.727647	ξ_t	0.598662	
U	1.65321	ξυ	-0.124934	
K	0.956691	ξκ	-0.234075	
J	0.0219085	ξj	-0.00746303	
V	-0.0117991	ξ_V	-0.000426452	

・ 何 ト ・ ヨ ト ・ ヨ ト

Table : The values (in atomic units) of the second-order electron-ion coupling constants $\xi_i^2 = \delta^2 \Xi / \delta R^2$ at the hydrogen-molecule equilibrium $(R = R_B \text{ and } \alpha = \alpha_B)$.

coupling constants (Ry/a_0^2)				
ξ_{ϵ}^2	0.327335			
ξ_t^2	-0.560426			
ξ_U^2	0.0504027			
ξ_K^2	0.013028			
ξ_J^2	-0.00671566			
ξ_V^2	-0.0105204			

$(H_2)_2$ molecule

Figure : TL: the difference of energies of the $(H_2)_2$ system an that of the free molecules (per molecule) vs. intermolecular distance *a*, **TR**: the one-particle microscopic parameters for two H_2 molecules system vs. intermolecular distance *a*, **B**: microscopic parameters vs. intermolecular distance *a*, **B**: microscopic parameters vs. intermolecular distance *a*, **B**: microscopic parameters vs. intermolecular distance *a*, **C** = $(A_2 + A_3) = (A_3 + A_3)$

 $\label{eq:Table} Table: The numerical values of single-particle energy and the hopping integrals for the two-molecule system.$

R (a ₀)	a (a ₀)	ϵ (Ry)	t_1 (Ry)	$t_2(Ry)$	$t_3 (Ry)$
0.715	1.43	-3.42645	-1.55344	-0.931964	0.279925
0.715	2.86	-2.90683	-1.39477	-0.234881	0.099267
0.715	4.29	-2.52287	-1.36709	-0.0498632	0.0338935
1.43	1.43	-3.44995	-0.802954	-0.802954	0.102336
1.43	2.86	-3.00071	-0.750421	-0.22323	0.0279053
1.43	4.29	-2.64834	-0.737967	-0.0535184	0.00961135
2.145	1.43	-3.23442	-0.42775	-0.765119	0.0500421
2.145	2.86	-2.88048	-0.421111	-0.229361	0.00128325
2.145	4.29	-2.56678	-0.418513	-0.0609803	-0.0019108
2.86	1.43	-3.00071	-0.22323	-0.750421	0.0279053
2.86	2.86	-2.71928	-0.235403	-0.235403	-0.00747347
2.86	4.29	-2.44103	-0.238535	-0.0670113	-0.006626

Figure : The one-particle microscopic parameters (in Ry) for two H_2 molecules system vs. intermolecular distance a and interionic distance R. Note the symmetry of ϵ and t_{14} . As expected for relatively small distances values of t_{12} and t_{13} are negative, whereas t_{14} is positive. When approaching point (0,0) all parameters diverge to minus (t_{12} and t_{13}) or plus (ϵ and t_{14}) infinity.

э