

Electronic structure, atomic forces and structural relaxations by WIEN2k

Peter Blaha

Institute of Materials Chemistry TU Vienna, Austria

APW-based methods (history and state-of-the-art)

- WIEN2k
 - program structure + usage
 - forces, structure relaxation
- Applications
 - Phonons in matlockite PbFI
 - Phasetransitions in Aurivillius phases
 - Structure of Pyrochlore Y₂Nb₂O₇

Numerically search for the energy, for which det[H-ES] vanishes.

Computationally very demanding "Exact" solution for a given (spherical) potential!

add
$$u_l = Ou_l / OE$$

 A_{lm} , B_{lm} , B_{lm} : join PWs in value and slope

→ General eigenvalue problem (diagonalization)

→ additional constraint requires more PWs than APW

SrTiO₃

Full potential The potential (and charge density) can be of general form (no shape approximation)

$$V(r) = \begin{cases} \sum_{LM} V_{LM}(r) Y_{LM}(\hat{r}) & r < R_{\alpha} \\ \sum_{K} V_{K} e^{i\vec{K}.\vec{r}} & r \in I \end{cases}$$

Inside each atomic sphere a local coordinate system is used (defining LM)

EFG Calculation for Rutile TiO_2 as a function of the Ti-p linearization energy E_p

Problems of the LAPW method

	1				A 4													18
1	1 H 1.008	2	Γ		-Aton	nic nu bol	mper			Metal Semi	metal		13	14	15	16	17	2 He 4.003
_	3	4		12.01	Sym	DÓI				Nonm	netal		5	6	7	8	9	10
2	Li	Be			-Atom	io we	iaht				nça bçan		В	С	N	0	F	Ne
ſ	6.941	9.012			πωπ		iyi il	1					10.81	12.01	14.01	16.00	19.00	20.18
1	Na	Ma											A1	e:	D	2	C1	
-1	22.99	24.31	3	4	5	6	7	5	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Ст	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	NБ	Mo	TC	\mathbf{Ru}	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
	85.47	87.62	88.91	91.22	92.91	95.94	98.91	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
	55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
0	CS	Ba	Lu	Hf	Та	W	Ke	Os	lr	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	132.9	137.3	175.0	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	209.0	210.0	222.0
_	87	88	103	104	105		107	108	109	110	111	112	113	114	115	116	117	118
1	FT	ĸa	LT	RI	DD.	SR	вп	HS	MIT	Uun	Uuu	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
	223.0]	225.0	262.1	261.1	262.1	263.1	264.1	265.1	268	269	272	277		289		289		293
		6	LE	1 Ce	Pr	· Ne	1 Pr	a Sr	n Ei	1 Ge	i Tł	D'	7 H.	o E	e Tr	n Yl)	
			138.	9 140.	1 140.	9 144.	2 146.	9 150.	4 152.	0 157.	3 158.	9 162.	5 164.	9 167.	3 168.	9 173.	Ō	
			1 89	90	91	92	93	94	95	96	97	98	99	100	0 10:	1 102	3	
		7	A		n Pá	1 U	INT	9 Fi	I AI		a B	R (C)	E E	s kr		a Ne	>	(~)1992
			227.	.0 232.	0 231.	0 238	0 237.	0 244	.1 243	.1 247	.1 247	.1 251	.1 252	.0 257.	1 258	.1 259	.1 к	remer Paul

Problems with semi-core states

Extending the basis: Local orbitals (LO)

$$\Phi_{LO} = [A_{\ell m} u_{\ell}^{E_{1}} + B_{\ell m} \dot{u}_{\ell}^{E_{1}} + C_{\ell m} u_{\ell}^{E_{2}}]Y_{\ell m}(\hat{r})$$

$$10 \qquad 10 \qquad 13p$$

- is confined to an atomic sphere
- has zero value and slope at R
- can treat two principal QN n for each azimuthal QN l (3p and 4p)
- corresponding states are strictly orthogonal (no "ghostbands")
- tail of semi-core states can be represented by plane waves
- only slight increase of basis set (matrix size)

D.J.Singh, Phys.Rev. B 43 6388 (1991)

E.Sjöstedt, L.Nordström, D.J.Singh, An alternative way of linearizing the augmented plane wave method, Solid State Commun. 114, 15 (2000)

- Use APW, but at fixed E_{I} (superior PW convergence)
- Linearize with additional lo (add a few basis functions)

$$\Phi_{k_n} = \sum_{\ell m} A_{\ell m}(k_n) u_{\ell}(E_{\ell}, r) Y_{\ell m}(\hat{r})$$

$$\Phi_{lo} = [A_{\ell m} u_{\ell}^{E_1} + B_{\ell m} \dot{u}_{\ell}^{E_1}] Y_{\ell m}(\hat{r})$$

basis for

optimal solution: mixed basis

- use APW+lo for states which are difficult to converge:
- (f or d- states, atoms with small spheres)
- use LAPW+LO for all other atoms and *l*

• APW (J.C.Slater 1937)

- Non-linear eigenvalue problem
- Computationally very demanding
- LAPW (O.K.Andersen 1975)
 - Generalized eigenvalue problem
 - Full-potential (A. Freeman et al.)
- Local orbitals (D.J.Singh 1991)
 - treatment of semi-core states (avoids ghostbands)
- APW+lo (E.Sjöstedt, L.Nordstörm, D.J.Singh 2000)
 - Efficience of APW + convenience of LAPW
 - Basis for

K.Schwarz, P.Blaha, G.K.H.Madsen, Comp.Phys.Commun.**147**, 71-76 (2002)

WIEN2k software package

An Augmented Plane Wave Plus Local Orbital Program for Calculating Crystal Properties

> Peter Blaha Karlheinz Schwarz Georg Madsen Dieter Kvasnicka Joachim Luitz

November 2001 Vienna, AUSTRIA Vienna University of Technology

http://www.wien2k.at

WIEN97: ~500 users WIEN2k: ~1190 users mailinglist: 1800 users

WIEN code as benchmark

- WIEN2k consists of many independent F90 programs, which are linked together via C-shell scripts (needs Unix/Linux)
- real/complex version (inversion)
- 10 atom cells on 256Mb PC / 100 atom cells require 1-2 Gb
- k-point parallel on clusters with common NFS (slow network)
- MPI/Scalapack parallelization for bigger cases (>50 atoms) and fast network

h-BN/Rh(111) nanomesh: 1108 atoms+vacuum on 64 cpus

You can run WIEN2k using any www-browser and the w2web interface, but also at the command line of an xterm.

Structure generator

- spacegroup selection
- import cif file
- step by step initialization
 - symmetry detection
 - *automatic input generation*
- SCF calculations
 - Magnetism (spin-polarization)
 - Spin-orbit coupling
 - Forces (automatic geometry optimization)
- Guided Tasks
 - Energy band structure
 - $\square DOS$
 - Electron density
 - X-ray spectra
 - **Optics**

Idea and realization

by

Session: TiC

/area51/pblaha/lapw/2005-june/TiC

StructGen™

Save S	Structure			or on an	9-0 to tun				
Title: Ti	С								
Lattice:									
Type: F	^]							
F B CXY		Spacegro Bilbao Cri	ups from						
CYZ CXZ B									
H 1_P1	*								
Lattice p	barame	eters in A	~						
a=4	.328000	0386 b=4.32	280000386 c	= 4.32800	0038(
α=9	0.00000	0 β=90.0	γ 00000	= 90.0000	000				
Inequiva	lent At	toms: 2							
Atom 1:	Ti		Z=22.0	RMT=	2.0000	remove aton			
Pos	1: x=0	.00000000	y=0.00000	000 z=	0.0000000	0 remove			
add	positio	n							
Atom 2:	С		Z=6.0	RMT=	1.9000	remove aton			
Pos	1: x=0	.50000000	y=0.50000	000 z=	0.5000000	0 remove			

- DFT: LDA, various GGAs; meta-GGA, LDA+U; Hybrid-DFT for "correlated electrons")
- Energy bands
 - classification of irreducible representations
 - ´character-plot´ (emphasize a certain band-character)
- Density of states
 - including partial DOS with I and m- character

h-BN/Ni(111): σ and π bands

- Electron densities, potential
 - total-, valence-, difference-, spin-densities, ρ of selected states
 - 1-D, 2D- and 3D-plots (Xcrysden)
 - X-ray structure factors, STM pictures
 - Bader 's atom-in-molecule analysis, atomic basins and charges ($\nabla \rho . \vec{n} = 0$)
 - spin+orbital magnetic moments (+ spin-orbit)

hyperfine fields (contact + dipolar + orbital contribution)

Mg-K

Spectroscopy

- core levels (with core holes)
- X-ray emission, absorption, electron-energy-loss
 - (core valence/conduction-band transitions including matrix elements and angular dep.)
 - EELS inclusion of possible non-dipol transititons (momentum transfer)
- optical properties (dielectric function in RPA, JDOS including momentum matrix elements and Kramers-Kronig)
- fermi surface (2D, 3D)

Total energy and forces

- optimization of internal coordinates, (damped MD, BROYDEN)
- cell parameter only via E_{tot} (no stress tensor)
- elastic constants for cubic cells
- Phonons via a direct method (based on forces from supercells)
 - interface to PHONON (K.Parlinski) bands, DOS, thermodynamics, neutrons

Pyrochlore structure of $Y_2Nb_2O_7$: strong phonon instabilities \rightarrow phase transition

Total Energy:

- Electrostatic energy
- *Kinetic energy*
- XC-energy

• Force on atom α :

$$U[\rho] = \frac{1}{2} \int d^{3}\vec{r} \ \rho(\vec{r}) V_{es}(\vec{r}) + \frac{1}{2} \sum_{\alpha} Z_{\alpha} V_{es}^{\alpha}(\vec{r})$$
$$T[\rho] = \sum_{i} n_{i} \varepsilon_{i} - \int d^{3}\vec{r} \ \rho(\vec{r}) V_{eff}(\vec{r})$$
$$E_{xc}[\rho] = \int d^{3}\vec{r} \ \rho(\vec{r}) \varepsilon_{xc}(\vec{r})$$
$$\vec{F}^{\alpha} = \frac{-dE_{tot}}{d\vec{R}_{\alpha}} = F_{HF}^{\alpha} + F_{core}^{\alpha} + F_{val}^{\alpha}$$

- Hellmann-Feynman-force $F_{HF}^{\alpha} = Z_{\alpha} \sum_{m=-1}^{1} \lim_{r_{\alpha} \to 0} \frac{V_{1m}^{es}(r_{\alpha})}{r_{\alpha}} \nabla_{\alpha} [r_{\alpha} Y_{1m}(\hat{r})]$
- Pulay corrections
 - Core
 - Valence

$$F_{core}^{\alpha} = -\int \rho_{core}(r) \nabla_{\alpha} V_{eff}(r) dr$$

 expensive, contains a of matrix elements o occupied states (don scf-iteration)

a summation
$$F_{val}^{\alpha} = \int_{\alpha} V_{eff}(r) \nabla_{\alpha} \rho_{val}(r) d\vec{r} + \sum_{k,i} n_i \sum_{K,K'} c_i^*(K') c_i(K) \times$$

we only in last
$$\left[(K^2 - \varepsilon_i) \oint \phi_{K'}^*(r) \phi_K(r) dS_{\alpha} - i(K - K') \langle \phi_{K'} | H - \varepsilon_i | \phi_K \rangle_{\alpha} \right]$$

- New developments (available)
 - non-linear optics (B.Olejnik)
 - non-collinear magnetism (spin-spirals to fully-relativistic) (R.Laskowski)
 - transport properties (Fermi velocities, Seebeck, conductivity, thermoelectrics, ...) (G.Madsen)
 - *GW (M.Scheffler): excited states*
 - BSE (R.Laskowski) Bethe-Salpether equation for electron-hole interactions; excitons

Intra-atomic NCM, fcc Pu

Spin density maps of fcc Pu. Calculation in FULL mode with SO. Average momenta point to (001)

PHONON

- by K.Parlinski (Crakow)
- runs under MS-windows
- uses a "direct" method to calculate Forceconstants with the help of an ab initio program
- with these Forceconstants phonons at arbitrary k-points can be obtained
- Define your spacegroup
- Define all atoms at previously optimized positions

- Define an interaction range (supercell)
 - create displacement file
 - transfer case.d45 to Unix
- Calculate forces for all required displacements
 - init_phonon_lapw
 - for each displacement a case_XX.struct file is generated in an extra directory
 - runs nn and lets you define RMT values like:
 1.85 1-16

 init_lapw: either without symmetry (and then copies this setup to all case_XX) or with symmetry (must run init_lapw for all case_XX) (Do NOT use SGROUP)
 run_phonon: run_lapw -fc 0.1 -i 40 for each case_XX

analyze_phonon_lapw

- reads the forces of the scf runs
- generates "Hellman-Feynman" file case.dat and a "symmetrized HFfile case.dsy (when you have displacements in both directions)
 - check quality of forces:
 - sum F_x should be small (0)
 - abs(F_x) should be similar for +/displacements
- transfer case.dat (dsy) to Windows
- Import HF files to PHONON
- Calculate phonons

^a Calculated at the theoretical lattice parameters (see table 4).

^b Calculated at the experimental lattice parameters.

H. Hageman et al., J. Phys.: Cond. Mat. 19 (2007)

- *Bilbao: J. Manuel Perez-Mato, M. Aroyo
- Universidad del País Vasco
- *Vienna: P. Blaha, K. Schwarz,
- J. Schweifer
- *Cracow: K. Parlinski
- J.M. Perez-Mato et al. PRB, 70, 214111

Ferroelectric Perovskites: PbTiO3

PbTiO₃

- Ferroelectric PT due to symmetry break at Tc: cubic ---- tetragonal Pm-3m ----- P4mm
- A single (degenerate) *normal* mode is responsible for the PT
- Structure in Ferroelectric Phase:

high-symmetry structure + frozen polar mode

Waghmare&Rabe 1997

King-Smith&Vanderbilt 1994

Ab-initio Phonon Branches

The Aurivillius Compounds

SBT $Bi_2SrTa_2O_9$ -

Previous ab-initio calculations in SBT

Stachiotti et al. 2000

- Unstable E_u polar mode
- Strong contribution of Bi displacement : Bi-O(2) hybridization

From symmetry analysis (group/ subgroup relations) the E_u mode alone cannot explain the complete phase transition

Ferroelectric Phase = $E_u + X_3^- + X_2^+$ mode

Phonons in SBT

SBT

CALCULATED "PHONON" BRANCHES

Ferroelectric Phase = $E_u + X_3^- + X_2^+$ mode

Theoretical E₁₁ and X₃- modes agree well with experimental modes

BUT ! The experimental frozen mode X₂⁺ does not

- Coupling with soft X₂⁺ mode relatively weak !
- Strong renormalization of hard (second) X₂⁺ mode

including only soft X₂⁺ mode

with additional hard X₂⁺ mode

only with the additional hard X₂+\mode the experimentally observed combination of 3 different modes can be established

• Finite temperature renormalization of the T=0energy map

 Landau theory suggests linear T-variation of the quadratic stiffness coefficients κ_{Fu} and κ_{X3}^{-1}

The topology of this phase diagram predicts two second order phase transitions and implies the existence of an intermediate phase of *Amam* symmetry. A single first order PT is impossible.

Insulating and non-magnetic 4d TM-oxide

- Ionic model: $Y_2^{3+}Nb_2^{4+}O_7^{2-}$ Nb⁴⁺: 4d¹
- → metallic or localized system with spin ½ (neither one observed in exp.)
- LDA gives nonmagnetic metallic ground-state with conventional t_{2g}-e_g splitting due to the octahedral crystal field of the oxygen atoms.

"degenerate" t_{2g} states are only partly filled.

DOS (states/eV)

- How could one obtain a non-magnetic insulator ?
- Antiferromagnetic s=1/2 solution
 - (on geometrically frustrated lattice !?)
- Localization, strong e⁻-e⁻ correlation:
 - 4d (not 3d !) electrons,
 - thus correlation should be small (Hubbard-U ~ 2-3 eV)
 - LDA+U with U=6 eV gives insulator (FM ground state, no AFM)
 - bandwidth of t_{2g} bands: 2.5 eV (similar to U)
- structural distortion, which breaks the dominant octahedral crystal field

Search for phonon-instabilities

 88 atom supercell, 46 symmetry adapted selected distortions from PHONON; resulting forces → back into PHONON

strong Phonon-instabilities, lowest at X, K, L

 select a certain (unstable) phonon, freeze it into the structure with a certain amplitude and perform full structural optimization

energy lower than in ideal pyrochlore structure, but still not insulating

- Primitive supercell with 88 atoms
- all atoms inequivalent

due to numerical optimization of the positions in P1

- Symmetrization using KPLOT (R.Hundt, J.C.Schön, A.Hannemann, M.Jansen: Determination of symmetries and idealized cell parameters for simulated structures, J.Appl.Cryst. 32, 413-416 (1999))
 - Tests possible symmetries with increasing tolerance

■ Space group → P-43m, 88 atoms/cell,

- Inequivalent atoms:
 - 2 Y
 - 2 Nb
 - **3** 01
 - **5** 02

Original pyrochlore

Relaxed structure

WIEN2k is a powerful tool to understand solids

- electronic and geometric structure
- interpretation of experiments (spectra)
- Together with PHONON you can calculate phonons also in rather complicated structures
- Use "phonons" not only to match with experiment but to investigate interesting physics
 - phase transitions
 - search for unknown structures

Thank you for your attention !