

IXS in surface sensitive geometry

 α_i below critical angle $\alpha_c =>$ penetration depth: ~30 Å Energy resolution: 3 meV

• More pronounced Kohn anomaly in surface sensitive geometry.

- increased electron-phonon coupling.
- changes in the Fermi surface.

2H-NbSe₂

The European Light Source

B. Murphy et al.; Phys. Rev. Lett. 95, 256104 (2005)

THz liquid surface dynamics

• Modification of the THz dynamics at the surface?

 $\Delta E = 3 \text{ meV}$ $\alpha_c = 0.16^\circ$ $\Lambda = 4.6 \text{ nm}$

H. Reichert et al.; Phys. Rev. Lett, 98, 096104 (2007)

The European Light Source

Generalised Hydrodynamics + memory function approach

• Slowing down of structural relaxation processes near the surface.

• Association with layer stratification and average density change.

Studies on polycrystalline materials

At low Q (1. BZ)

At high Q (50–80 nm⁻¹)

Orientation averaged longitudinal sound velocity

(Generalised) phonon density-of-states

Information content is incomplete!

The European Light Source

Single crystal properties from polycrystalline materials

- Record IXS spectra for $2 < Q < 80 \text{ nm}^{-1}$.
- Confront experiment with simulations.
- Least-square refinement of experimental data.

Test case: polycrystalline Beryllium (thesis: I. Fischer)

I. Fischer et al.; in preparation

Dispersion relations

Combined diffuse scattering and IXS study on ZrTe₃

Diffuse scattering is dominated by non-dynamical scattering
 --> disorder contributes strongly to diffuse scattering

The European Light Source

M. Hoesch, A. Bosak, D. Chernyshov, H. Berger, A. Mirone, and MK; in preparation

Conclusions

- IXS complements INS capabilities
 - samples in very small quantities.
 - extreme conditions (high pressure and temperature).
 - dynamics at surfaces and thin films.

Technical developments

- efficient spectrometer (5 -> 9 -> 50 crystal analysers)
- efficient experiment preparation and data analysis

Thanks to:

- the ESRF colleagues

- the management for support and inspiration
- proactive User Community

The European Light Source