Magnetic and structural properties of epitaxial Fe/Fe₃O₄/Fe tri-layers.

M. Zajac¹, M. Slezak¹, T. Slezak^{1,2}, K. Matlak¹, N. Spiridis², K. Freindl², D. Aernout¹, J. Korecki^{1,2}

¹ Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

² Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek
8, 30-239 Kraków, Poland

A series of Fe_I/Fe₃O₄/Fe_{II} trilayers with varying thickness of the magnetite spacer layer were epitaxially grown on cleaved MgO(001) single crystals. The thickness of the ⁵⁶Fe_I and ⁵⁶Fe_{II} layers was fixed to 20nm and 10nm, respectively, whereas the spacer thickness was varied between 1-20 nm. Structural properties and chemical composition of the samples were monitored at each preparation step by LEED and AES. CEMS was used to follow magnetic and structural properties of the ⁵⁷Fe₃O₄ spacer grown using ⁵⁷Fe isotope. Magnetic hysteresis loops were measured *in-situ* by the longitudinal MOKE at each preparation step with external magnetic field applied along different in-plane crystallographic directions. Ex-situ temperature dependent MOKE measurements were performed in the LN₂ flow cryostat. The MOKE loops indicate anti-parallel alignment of magnetic moments in the Fe₁ and Fe_{II} layers for the all investigated tri-layers. The CEMS data showed that except of dominating magnetite phase there is a thin layer (most probably FeO-like) formed at the Fe₁/Fe₃O₄ and Fe₃O₄/Fe_{II} interfaces. Additionally, a significant exchange of Fe atoms between the iron layers and the magnetite spacer can be concluded from the analysis of the CEMS spectra.