Introduction	Method	Tiesuits	Summary and conclusions

Lattice dynamics of ReO₃ from the quasiharmonic approximation

U. D. Wdowik¹, K. Parlinski¹ T. Chatterji², S. Rols² and H. Schober²

¹Institute of Technology, Pedagogical University, Krakow, Poland ²Institute Laue-Langevin, Grenoble, France

3rd Workshop on ab initio phonon calculations, Krakow, 2-4 Dec. 2010

Introduction	Method	Results	Summary and conclusions
Origins of NTE			

- magnetostriction ferroelectric materials
- valence transition intermetallic compounds, fulleride materials
- Iow-frequency rigid unit modes (RUM)
 - oxide-based framework materials
 - CN-based compounds
- materials with open framework structure usually insulators or semiconductors

ReO₃

- metal low electrical resistivity (comparable to Cu or Ag)
- metallic conductivity due to delocalized 5d-Re electrons
- highly covalent Re-O bond ⇒ covalent metal
- properties of the lattice not typical for metallic phase

Results

Summary and conclusions

Network of ReO₃ octahedra

perovskite-type compound (ABO₃) with A site vacant

Rigid rotation of octahedra

anisotropy of thermal motion

NTE

structural phase transitions

space group *Pm*3*m*lattice constant a = 3.74 Å

Results

Summary and conclusions

Rigid unit modes and M-type phonon

Experimental observations

$Pm\bar{3}m \Rightarrow Im\bar{3}$

- 5.2 kbar (RT)
- 3.5 kbar (150 K)
- 2.5 kbar (4.2 K)

Intermedite phase/phases?

 $Pm\bar{3}m \rightarrow P4/mbm \rightarrow Im\bar{3}$

 $P4/mbm \rightarrow I4/mmm \rightarrow Im\bar{3}$

NTE

- 100-340 K laser interferometry
- below 100 K x-ray diffraction, EXAFS
- up to 200 K neutron diffraction

NTE depends on sample quality (static disorder)

Experiment and calculations

Inelastic neutron scattering

- IN4C TOF spectrometer @ ILL
- E_i = 16.9 meV (2.2 Å)

Resolution

- ~0.6 meV @ elastic scattering
- ~4 meV @ 50 meV
- ~10 meV @ 100 meV

Corrections for multiphonon and DW contributions

MUPHOCOR by W.Reichardt Karlsruhe Institute for Nuclear Physics

DFT calculations

- VASP code, PAW PP
- LDA approximation
 - a_{CAL} = 3.7467 Å
 - a_{EXP} = 3.7477 Å
- 2x2x2 s.c. (32 atoms)

Phonons

- Direct method PHONON
- Thermal properties QHA

Results

Summary and conclusions

Dispersion relations for ReO₃ at ambient pressure

Results

Summary and conclusions

Rotational modes condense under compression

T. Chatterji *et al.* PRB 79, 184302 (2009)
J. D. Axe *et al.* PRB 31, 663 (1985)

Grüneisen constants			
<i>T</i> ⁽²⁾ 1.24	<i>T</i> ⁽³⁾ _{1<i>u</i>} 2.11	<i>T</i> _{2<i>u</i>} 1.03	
Grüneis	sen co	nstants	
Mode	Cal.	Exp.	

Mode	Cal.	Exp.
Μ	-291	-242 ^[1]
		-180 ^[2]
R	-46	-

Softenii (THz/kb	ng rates ar)	
M -0.12	R -0.04	

Thermal expansion of ReO₃

T. Chatterji *et al.* PRB 78, 134105 (2008)
T. Chatterji *et al.* PRL 94, 241902 (2009)

Cal. Neutron LDC 170 K 200 K 350 K	NTE		
	Cal.	Neutron	LDC
	170 K	200 K	350 K

Average α_V below NTE-PTE crossover temperature $\langle \alpha_V \rangle = -1.2 \times 10^{-6} \text{ 1/K}$

QHA vs LDC

- similar expansivity below NTE-PTE
- PTE regime α_V (LDC) \sim 2 α_V (QHA)

NTE of ReO₃ and atomic thermal motion

NTE and static disorder in ReO₃

- large contribution from static disorder ⇒ diminished NTE
- samples with less static disorder
 - high NTE-PTE crossover temperature (294 K)
 - quite large negative thermal expansivity (-1.0 × 10⁻⁶ 1/K)

Mean-squared vibrations of ReO₃

- Experimental *U_{ij}* contain static and dynamic contributions
- Present calculations dynamic component
- Re $(\bar{3}m) \Rightarrow$ isotropic thermal motion \Rightarrow U(Re)
- O $(4/mmm) \Rightarrow$ anisotropic thermal motion U₁₁ (O) oxygen vibrations || to Re-O bond U₂₂ (O) = U₃₃ (O) oxygen vibrations \perp to Re-O bond

Results

Summary and conclusions

Atomic thermal motion in ReO₃

Results

Summary and conclusions

Atomic thermal motion in ReO₃

Results

Summary and conclusions

Atomic thermal motion in ReO₃

Results

Summary and conclusions

Atomic thermal motion in ReO₃

Results

Summary and conclusions

Atomic thermal motion in ReO₃

Results

Thermal motion and static disorder of ReO₃

 α (Re)=0.062 b/amu, α (O)=0.265 b/amu scattering dominated by oxygen (93%)

- static disorder breaks propagation of phonons throughout lattice
- shift of intensity for peaks at 41 meV and 55 meV into continuous distribution at low energies (10-35 meV)

Anisotropy of the oxygen thermal vibrations

- high quality samples
 - lower gap between U₃₃ and U₁₁
 - diminished anisotropy $\eta = U_{33}/U_{11}$
- low temperatures: η (exp.) $\approx \eta$ (cal.)
- η related with anisotropy in the force constants at O site

•
$$\Phi_{zz} \approx \frac{1}{2} \Phi_{xx}$$

 \Downarrow

- larger amplitude of thermal vibrations in direction perpendicular to Re-O bond than along the bond
- highly anisotropic motion in a direction consistent with M-phonon mode \Downarrow
- coordinated rotations of ReO₃ octahedra

Results

Summary and conclusions

Anisotropy vs temperature and pressure

T = 100 K

- anisotropy minimum
- expansivity minimum
- NTE coincides with more isotropic thermal motion of O atoms
- reduction/enhancement in η - additional driving force converting ReO₃ from NTE to PTE

anisotropy vs pressure

- simultaneous hardening of $\Phi_{xx}(O)$ and softening of $\Phi_{zz}(O)$
- ${lackstar}$ reduction of U_{11} and enhancement of $U_{33} \Rightarrow$ increase of anisotropy

Summary and conclusions

- Large negative values of Grüneisen constants for M and R phonons
- 2 M-phonon softens more rapidly than R-phonon with crystal compression
- Anisotropy of the oxygen thermal motion in ReO₃
 - follows from the anisotropy of the force constants at the oxygen site
 - consistent with the M-phonon
 - contributes to NTE of ReO3
 - NTE is enhanced when oxygens perform more isotropic thermal motion
- Anisotropy additional force driving the low-pressure phase transitions
- Details can be found in PRB 82, 104301 (2010)