

Deep Earth thermodynamics from phonons

Kamil Tokár

Department of Material Research by Computers

Kraków, Poland 1-4th DEC 2010

Structure of Earth interior - overview

Structure of Earth's Transition Zone – simplified description

Wadsleyite against Wadsleyite II

Wadsleyite $II - Mg_2SiO_4$ is a recently detected magnesium-iron silicate phase - a potential host for hydrogen in the Transition Zone, between the wadsleyite and ringwoodite zones (*Smyth J.R. and Kawamoto T. (1997)*).

Methods used in theoretical study of Wadsleyite II

- DFT+GGA with PBE functional and PAW approach
- Direct method for determination of the lattice dynamics
- Quasi-harmonic Approximation (QHA) in Thermodynamic model

Unit cell parameters of Wadsleyite II – pressure dependence

Lattice parameters

3rd – order Birch-Murnaghan EOS

Comparison of lattice constants

Wadsl. II	<i>a</i> [Å]	<i>b</i> [Å]	<i>c</i> [Å]
10.56 GPa ^{a)}	5.583	28.426	8.056
10.00 GPa ^{b)}	5.654	28.322	8.105
0.00 GPa ^{b)}	5.749	28.791	8.289

^{a)} exper. Smyth et al.,Phys.Chem.Mineral **31**,691 (2005) ^{b)} calc. Tokár et al.,J.Phys.: Condens. Matter **22**,145402 (2010)

Comparison of bulk moduli

(Smyth et al. (2005))

Wadsl. II	H ₂ O wt%	K (GPa)	Κ'
anhydrous ^{a)}	-	167±10	-
hydrous ^{a)}	2.1	151±6	6±2.5
	2.8	145.6±2.8	6.1±0.7
this study ^{b)}	-	160.1	4.3

CUSSION MFTHODS RESUIT rs ISION DIS

Lattice stability of the Wadsleyite II at high pressure (calculation)

Crystal of wadsleyite II has mechanically stable structure

wave vector - k

PDOS

Lattice dynamics: Partial Phonon DOS of Wadsleyite II: p=0 GPa

Constraining of the complete pT diagram

Construction of thermodynamical model:

- Lattice dynamics calculated from *ab initio*
- PDOS of all considered Mg₂SiO₄ phases: wadsleyite, ringwoodite, wadsleyite II + (periclase+perovskite)
- **QHA** approximation to parametrize thermodynamical functions of the phases and constrain coexistence boundaries

QHA approximation used to derive pT diagram

Phase boundary: Locus of points {*p*,*T*} with condition:

$$\mu_{\beta}(T, p) = \mu_{\gamma}(T, p) = = \{p, T\}$$

Lattice dynamics: $PDOS g(\omega) \implies F_{phon}(T, V)$ $F_{phon}(T, V) = k_B T \int_0^\infty g(\omega) ln \left(2sh \frac{\hbar\omega}{2k_B T} \right) d\omega$

Free energy: $G_{phas}(T, p) = E_{stat}(V) + F_{phon}(T, V) + pV$

Effective chemical potential:

 $\mu_{phas}(T, p) = G_{phas}(T, p) / N :: p=const.$

N – number of particles in the unit cell

Complete Mg₂SiO₄ phase diagram and triple point at high pressure

Triple point: phases meet at p=21.6 GPa, T=1400 K

Dissociation: (β ; γ) - Mg₂SiO₄ ---> { MgO(periclase) + MgSiO₃(perovskite) }

Wadsleyite II phase relations to wadsleyite and ringwoodite (estimation)

INTRODUCTION METHODS RESULTS **DISCUSSION** CONCLUSION Wadsleyite II phase thermodynamic stability in Mg_2SiO_4 system

Conlusions

- Crystal lattice of wadsleyite II is mechanically stable up to 30 GPa
- Wadsleyite II is thermodynamically unstable in the magnesiumorthosilicate system and can be considered as an intermediate phase
- Wadsleyite II structure could be stabilized by Fe ions doping

Thank you.