Returnable Electron-Phonon Interaction in the II-VI Compound Alloys

Józef Cebulski and <u>E.M. Sheregii</u>

University of Rzeszów, Rejtana 16c, Rzeszów 35-959, Poland sheregii@univ.rzeszow.pl www.fonon.univ.rzeszow.pl/~zef

A. Marcelli and M. Piccinini INFN - Laboratori Nazionali Frascati, via E. Fermi 40, 00044 Frascati (RM) Italy

The phonon spectra

of $Hg_{1-x}Cd_xTe$ (MCT)

Mismatch of lattices is less than 0.1 %

Zero Gap State – singularity in the band–structure

The phonon spectra of $Hg_{1-x}Cd_xTe$ (MCT)

J.Baars and F.Sorgers, *Solid State Commun.*, **10**, 875(1972)

The phonon spectra of $Hg_{1-x}Cd_xTe$ (MCT)

- 1. D.N. Talwar, J.Appl.Phys. 56, 1601 (1984).
- 2. 2. P.M. Amirtharaj, N.K. Dhart, J. Baars and H.Seelewind, *Semicond. Sci. Technol.* 5, S68(1990).
- 3. S. Rath, K.P. Jain, S.C. Abbi, C. Julien, M. Balkanski, Phys. Rev. B ,52, 24, 17172 (1995).
- 4. Li. Biao , J.H.Chu, H.J. Ye, S.P. Guo, W.Jiang, D.Y.Tang, Appl. Phys. Lett. 68, 23, 3272, (1996).
- 5. 5. S.P.Kozyrev, L.K. Vodopyanov, R.Triboulet, Phys. Rev.B, 58, 3, 1374 (1998).
- 6. Li. Biao, Appl. Phys. Lett, 73, 1538 (1998).
- J.Cebulski, E.M. Sheregii, J.Polit, A.Marchelli, M. Piccinini, A. Kisiel, I.V.Kucherecho, R. Triboulet, *Apll. Phys. Lett.* 92, 121904 (2008).
- 8. E.M. Sheregii, J. Cebulski, A. Marcelli and M. Piccinini, *Phys. Rev. Lett.* **102**, 045504, (2009)
 - Additional lines in the 100 cm⁻¹ -115 cm⁻¹ region (All communications)
 - Abnormal temperature dependence of the HgTe-like phonon mode frequency (S. Rath, at al., *Phys. Rev. B*, 52, 24, 17172 (1995); E.M. Sheregii, at al., *Phys. Rev. Lett.* 102, 045504, (2009))
 - Subtle structure of maine spectral subbands
 - (All communications)

Electron-Phonon Interaction

In the multi-mode medium each phonon mode produces his own polar potential

$$V_q^s = \frac{\hbar\omega_{LOs}}{qu^{1/2}} \left(\frac{4\pi\alpha_s}{V}\right)^{1/2}$$

D. Płoch, E.M. Sheregii, M. Marchewka, M. Woźny and G. Tomaka, *Phys. Rev. B* **79**,195434 (2009)

It is a direct electron-phonon interaction

Zero Gap State – singularity in the band–structure

This singular mechanism of the E_g variation may be triggered by an external pressure or by a temperature.

Singularity in the band structure

According to the Kane's theory [E. Kane, J. Phys. Chem. Solids 1, 82 (1956).] for the compositions with a zero-band gap the electron effective mass at the conduction band edge should be equal to zero – experiment's data shown that it is really close to zero.

Many physical properties are then strongly affected by this singular characteristic of the band-structure of such alloys.

Now, this singularity is known as Dirac point existed in graphene

Mechanism of the electron-phonon coupling

Mechanism of the electron-phonon coupling It is necessary to identify the electron-phonon interaction mechanism to analyse the influence of the zero-gap state to the phonon spectra

The transverse optical (TO) phonons are only clearly recognized in the optical reflectivity experiments The preferred mechanism for the interaction of electrons with TO-phonons is a deformation potential

The electron-phonon coupling constant for the *TO*-phonons with a small wave vector *q*, is:

$$V_{n,n'}(\mathbf{k},\mathbf{q},\mathbf{s}) = \left(\frac{\hbar}{2MN\omega_{TO}}\right)^{\frac{1}{2}} \frac{1}{a} \Xi_{n,n'}(\mathbf{k},\mathbf{q}) \mathbf{e}(\mathbf{q},\mathbf{s})$$

the optical deformation potential matrix is:

$$\Xi_{n,n'}(k,q) = a \int \psi_{n',k+q} \frac{\partial V}{\partial u} \psi_{n,k} dr$$

the self energy of the TO-phonons with small wave-vector q is:

$$\boldsymbol{\omega}_{TO}^{*2} = \boldsymbol{\omega}_{TO}^2 - \int d\boldsymbol{E} F(\boldsymbol{E}) \left\{ \frac{1}{\boldsymbol{E} + \boldsymbol{E}_g + \hbar \boldsymbol{\omega}_{TO}} + \frac{1}{\boldsymbol{E} + \boldsymbol{E}_g - \hbar \boldsymbol{\omega}_{TO}} \right\}$$

H. Kawamura, S. Katayama, S. Takano, S. Hotta, Solid State Comm. 14, 259 (1974) **Two kinds of singularity could be predicted:** First one: $\hbar\omega_{TO} = E_g$ Second one: $E_g(T) = 0$

Workshop Phonons ab initio Krakow

Workshop Phonons ab initio Krakow

EXPERIMENT

EXPERIMENT A brilliant and intense synchrotron radiation (SR) in the far infrared domain offers unique advantages **Far Infrared reflectivity experiments** were performed at

the DAFNE-light laboratory at Frascati (Italy)

The frequency positions vs. temperature range of the HgTe-like (T_0 -mode) and CdTe-like (T_1 -mode) sub-band maxima on the Im[$\epsilon(\omega,T)$] curves Hg_{1-x}Cd_xTe (x=0.11)

Workshop Phonons ab initio Krakow

The optical reflectivity experiment in the far-infrared region

Workshop Phonons ab initio Krakow

The optical reflectivity experiment in the far-infrared region $Hg_{l-x}Zn_xTe$ (x=0.06)

The dielectric function imaginary part, HgTe-like sub-band $Hg_{1-x}Zn_xTe$ (x=0.06)

The frequency positionsvs. temperature range of the HgTe-like (T_0 -mode) andZnTe-like (T_1 -mode) sub-band maxima on theIm[$\epsilon(\omega,T)$] curves Hg_{1-x} Zn_xTe (x=0.06)

SUMMARY

- Experimental data of the optical reflectivity for $Hg_{1-x}Cd_xTe$ (x=0.115) and $Hg_{1-x}Zn_xTe$ (x=0.06) samples) obtained in a wide interval of temperature (from 20 K to 290 K) and in the farinfrared (FIR) domain with using a brilliant synchrotron radiation show that frequencies of the optical phonon modes exhibit discontinuity in their temperature dependence when a zero-gap state occurs.
- This discontinuity is evidence of the returnable electron-phonon coupling in semiconductors.
- The mechanism of returnable electron-phonon coupling is deformation potential not polar one.

Acknowledgments

Authors are greatly indebted to Prof. Andrzej Kisiel, Dr. Benjamin Robouch, Prof. Vodopyanov and Prof. Emilio Burratini for invaluable discussions.

This work was partly supported by the EU Foundation: the TARIcontract HPRI-CT-1999-00088.

Thank you for your attention

