

DFT study of the structural phase transition in LiFeSi₂O₆

Agata Siegel, Przemysław Piekarz, and Krzysztof Parlinski

Li-aegirine

- Belongs to the pyroxenes a group of important rock-forming silicate minerals found in many igneous and metamorphic rocks.
- Crystallize in the monoclinic structure
- Has two phases high temperature C2/c phase and low temperature P2₁/c phase. P2₁/c \subset C2/c
- It is an antiferromagnetic with $T_N = 17.5 \text{ K}$
- It is a multiferroic coexistence of magnetic and ferroelectric order

Calculation details

- For calculations (DFT) of crystal structure the VASP package was used with PAW/PBE atomic data and Generalized Gradient Aproximation (GGA)
- Phonons were calculated using PHONON software
- Calculated supercells contained 40 atoms for C2/c structure, and 80 atoms for P2₁/c structure
- All calculations have been performed with the AF magnetic order

Crystal structure

The general formula of pyroxenes is $AMSi_2O_6$, where A stands for alkali metal such as Li, Na, K, etc. M stands for metal ions such as Fe, Mn, Cr, Al, etc

Comparison of experimental and calculated lattice parameters

	C2/c		P2 ₁ /c	
	Exp	Calc	Exp	Calc
	(T=298K)		(T=100K)	
a [Å]	9.66	9.86	9.62	9.83
b [Å]	8.66	8.89	8.66	8.88
c [Å]	5.29	5.36	5.26	5.33
β	110.19	111.02	109.95	110.8

 $P2_1/c - G.J.Redhammer et al$, Phys and Chem of Minerals 28 (2001) 337-346 C2/c - G.J.Redhammer et al, Zeitschrift fur Kristallographie 219 (2004) 278-294

Phonons

Phonon dispersion curves in p = 0 GPa

phase transition from C2/c to $P2_1/c$

wave vector

Phonon Density Of States (pDOS)

Pressure-dependence of the soft mode

Phonon dispersion curves for $p \neq 0$ GPa

Calculations were performed only for the C2/c phase of $LiFeSi_2O_6$

The pressure of the C2/c \rightarrow P2₁/c phase transition for temperature of 0 K is p= -3.306 GPa

Phase diagram of Li-aegirine

Conclusions

- We did calculations for two phases of LiFeSi2O6: high temperature phase C2/c and low temperature phase P21/c
- Calculated lattice parameters are in a good agreement with experimental data
- Phonon dispersion curves and phonon densities of states have been calculated for both phases of Li-aegirine for the first time
- We discovered soft mode responsible for the phase transition C2/c → P2₁/c
- The calculated point of phase equilibrium at T=0 K is consistent with the experimentally constrained boundary

THANK YOU

Acknowledgments:

This work was partially supported by:

- Marie Curie Reserch and Training Network under contract No. MRTN-CT-2006-035957 (c2c)
- the Polish Ministry of Science and Higher Education under project No. N N202 483039.