OPAL: capability enhanced by ~10 - 1000 times relative to HIFAR

Aim to compete with top 3 research reactors in the world: ILL, FRM2, NIST A national and international scientific user facility

Determination of the symmetry of ferroelectric phase of SrTi¹⁸O₃ from lattice dynamics calculations

^aDon Kearley, ^aMaciej Bartkowiak, ^aMohana Yethiraj and ^bAnnemieke Mulder

^aAustralian Nuclear Science and Technology Organisation Lucas Heights, Australia

^bUniversity of New South Wales, Sydney, Australia

STO16 = $SrTi^{16}O3$ STO18 = $SrTi^{18}O3$

The question – why does STO16 have no lowtemperature ferroelectric phase but STO18 does? We would be happy just to determine the structure!

Phase transitions

Strontium titanate (STO) is a classic perovskite ABO₃

Sr as the A-cation with 12-fold cuboctahedral coordination

Ti as the B-cation with 8-fold octahedral coordonation

02/12/10 Australian Government

Overview of talk

Existing crystallographic information

Sample preparation -

Our crystallographic failures

Did it actually work? Raman

Calculation of soft modes in tetragonal phase of STO, where do they lead?

Optimise the resulting structure – does it make sense.

Can we measure phonons in STO18?

Can we say anything about the quantum paraelectric behaviour?

Is a quantum paraelectric K. A. Muller and H. Burkard, Phys.Rev. B 19, 3593 (1979)

FIG. 2. Dielectric constants ϵ_{110} and $\epsilon_{1\overline{10}}$ of the monodomain SrTiO₃ samples A and B (σ_{th} is the stress applied by thermal treatment). Inset: $10^3/\epsilon vsT$.

5

Becomes ferroelectric if the content of ¹⁸O isotope exceeds 33% M. Itoh, R. Wang, Y. Inaguma, T. Yamaguchi, Y-J. Shan, and T. Nakamura, Phys. Rev. Lett., 82, 3540 (1999)

FIG. 1. Comparison of temperature dependence of ε_r and tan δ for STO16, STO45-18, and STO18. Insets show the temperature dependence of $1/\varepsilon_r$ for zero bias. Temperatures in the insets show θ obtained by the least squares fitting by Curie-Weiss law, $\varepsilon_r = C/(T - \theta)$, for the data between 100 and 200 K.

Raman spectra for STO16 and STO18 at 4, 10, and FIG. 4. 50 K.

6

100

80

02/12/10 lian Government

Not particularly easy	¹⁸ O not abundant
-----------------------	------------------------------

Isotope	e Atomic mass (m _a /u)	Natural abundance (atom %)	Nuclear spin (I)	Magnetic moment (µ/µ _N)
¹⁶ O	15.99491463 (5)	99.757 (16)	0	0
¹⁷ 0	16.9991312 (4)	0.038 (1)	⁵ / ₂	-1.89380
¹⁸ 0	17.9991603 (9)	0.205 (14)	0	0

Good neutron scattering cross-section (can see against heavier elements) but no difference in coherent scattering between ¹⁸O and ¹⁶O)

Neutron scattering lengths and cross sections							
Isotope	conc	Coh b	Inc b	Coh xs	Inc xs	Scatt xs	Abs xs
0		5.803		4.232	0.0008	4.232	0.00019
16O	99.762	5.803	0	4.232	0	4.232	0.0001
170	0.038	5.78	0.18	4.2	0.004	4.2	0.236
18O	0.2	5.84	0	4.29	0	4.29	0.00016

Structural information on ferroelectric phase is limited: Single-crystal (multidomain) neutron diffraction Y. Noda, K. Mochizuki, H. Kimura, M. Itoh, T. Kyomen, and R. Wang, Journal of the Korean Physical Society 46, 69 (2005)

Fig. 1. Lattice parameters referred to *fct* unit cell.

Fig. 2. Intensity of $\{6 \ 0 \ 0\}_c$ Bragg reflection as a function of temperature.

lovernment

Table 1. Structure analyses at 8 K based on various space groups.

Space group	Poralization	R-factor(%)	param.
I4/mcm	non-polar	6.11	7
I4cm	Ps//[001]t	5.07	10
Iba2	Ps//[001]t	5.02	11
I2cm	Ps//[100]t	4.94	14
Fm2m	Ps//[010]c	4.45	16
F2mm	Ps//[100]c	4.41	16
Fmm2	$\mathrm{Ps}//[001]\mathrm{c}$	4.45	15

Definite evidence of transition at ~35K, fairly certain tetragonal \rightarrow orthorhombic, but space-group not certain.

Situation overview

Sample preparation

We tried to make the stuff by solid-state exchange: ¹⁸O for ¹⁶O then weigh to see what we got.

Ferroelectric phase transition varies with amount of oxygen-18 (R. Wang and M. Itoh, Phys. Rev. B, 2001)

We estimate our exchange (from weight) to be ~60% This would give the transition at ~17K

From neutron powder diffraction we see no transition between 30 and 4K! Did the oxygen really exchange?

02/12/10 Australian Government **Ansto**

Room-temperature Raman is complex – no fundamentals are Raman-active. Can sort out multiphonons (from PHONON) and assign oxygen participation.

Government

shift [cm ⁻¹] O18	shift [cm ⁻¹] O16	Main contributions
69.3	71.8	O, Ti
109.3	116	O only
141.7	141.8	Sr
147.7	147.7	Sr
164.2	165	all
172.6	173.6	all
231.06	245	0
245.27	260.1	O only
407	426.3	0
410	431.5	0
426.2	433.8	Ti
433.8	434.8	Ti
451.8	479.2	O only
452.65	480.1	O only
498.6	528.8	0
508.85	539.7	0
780.8	828.2	O only

In the regular STO crystal the sum of the yellow rows gives the peak at 622 cm⁻¹ and the sum of the green rows gives the peak at 681 cm⁻¹.

13

ansto

Maciej Bartkowiak

"What can I do without a sample?"

Ansto

M. Takesada, M. Itoh, and T. Yagi, PRL 96, 227602 (2006)

FIG. 2 (color). The temperature dependence of E_u (\bigcirc), A_{2u} (\blacktriangle), and E_g (\blacksquare) modes above T_c , and $A_1(E_{u1})$ (\bigcirc), $B_2(E_{u2})$ (\bigcirc), $B_1(E_{g1})$ (\blacksquare), $A_2(E_{g2})$ (\square), and $B_1(A_{2u})$ (\bigstar) modes below T_c in SrTi¹⁸O₃. The E_g , $B_1(E_{g1})$, and $A_2(E_{g2})$ modes are observed in the VH geometry (see Fig. 3).

02/12/10 Australian Government

A reasonable starting point:

experimental structure of the paraelectric phase at **1.5 K** (Kiat et al., J. Phys.: Cond. Matt., 1996)

SIDE VIEW

ansto

The energy minimization: our first step

Crystallographic structure cell energy (free energy)

-160.573019 eV

Relaxed structure cell energy (free energy)

-160.597644 eV

Calculated Dispersion curves of paraelectric (tetragonal) SrTiO₃

02/12/10 Australian Government

What does displacement lead to?

It is the expected Slater mode, but there is also a slight displacement of the strontium

Leads to Ima2, identical to I2cm with permutation of axes

FIG. 3. Energy of the supercell plotted against the amplitude of atom displacement. The atoms are displaced along the directions associated with the imaginary frequency at the Γ -point (see Figure 4). The displacement amplitude varies between atoms and therefore the abscissae axis shows the average displacement per atom. Table 1. Structure analyses at 8 K based on various space groups.

Space group	Poralization	R-factor(%)	param.
I4/mcm	non-polar	6.11	7
I4cm	Ps//[001]t	5.07	10
Iba2	Ps//[001]t	5.02	11
I2cm	Ps//[100]t	4.94	14
Fm2m	Ps//[010]c	4.45	16
F2mm	Ps//[100]c	4.41	16
Fmm2	Ps//[001]c	4.45	15

Single-crystal (multidomain) neutron diffraction Y. Noda, K. Mochizuki, H. Kimura, M. Itoh, T. Kyomen, and R. Wang, Journal of the Korean Physical Society 46, 69 (2005)

20

ansto

Is our result reasonable?

Calculated Raman-active modes for Ima2 cell

Shigenari et al., PRB 2006

Observed Raman frequency¹⁷ $[cm^{-1}]$ $assignment^{17}$ Calculated Raman frequency [cm⁻¹] $\operatorname{assignment}$ A_{1}/B_{2} 1747 B_2 17.5 B_1 42 B_1 A_1/B_2 171167 B_2 171 A_{1}/B_{2} 167 A_1 171 B_1 174 B_1 A_{1}/B_{2} 517510 B_2 512 A_1 517514 B_1 B_1

22

Ours

Ansto

Is the new Ima2 structure stable?

02/12/10 Australian Government

Ansto

Differences in neutron diffraction are small, but we should see them

02/12/10 Australian Government

Could we measure the phonons?

FIG. 2. Phonon dispersion curves calculated for structure B (black lines) and structure C (dashed red lines) from the centre of the Brillouin zone to the zone boundary along the [111] direction. The negative values correspond to calculated imaginary frequencies. Structure B is not stable, as indicated by the imaginary phonon frequencies at the Γ point.

It will be difficult to measure the differences in dispersion between the 2 phases as large single crystals are expensive to make.

25

Differences are very small.

02/12/10 Australian Government

Differences in VDOS are smaller but we have enough powder to try this.

FIG. 5. The phonon density of states of $SrTi^{18}O_3$ calculated for (a) tetragonal structure B (blue line) and (b) orthorhombic structure C (red line with crosses). The inset shows the region around 60 meV where the difference between the two is most pronounced.

26

Why does the transition happen?

Mechanisms proposed so far:

NMR, EPR experiments -> order-disorder transition (Blinc et al, PRL, 2005)

Raman experiments -> displacive transition, softening of the Slater mode (Takesada et al., PRL, 2006)

Raman experiments -> a mixed transition, both order-disorder and displacive (Shigenari et al., PRB, 2006)

Raman experiments -> percolation of polar regions (Shigenari and Abe, Ferroelectrics, 2008

What can we add?

The idea of the quantum paraelectric is that the classical displacement of the Ti (r) to reach the ferroelectric phase is less than its zero-point motion (z) .

It then becomes possible to adjust force-constants, and/or "phonon dressing" to get this condition at ~35K.

How do our results stack-up?

Zero-point from PHONON r=0.033Å z=0.039

02/12/10 Australian Government Ansto

Where to now?

Calculation of Raman intensities using DFPT approach implemented by Abinit package or by CASTEP

Molecular dynamics simulation in order to determine correlations between atomic positions

Experiment:

- specific heat measurements
- diffraction experiment with Wombat
- DOS measurements with Taipan

Appendix 3: Calculation parameters

Energy cutoff: 650 eV

Supercell: 15.6144 x 11.0268 x 11.0268 Angstrom

K-points for the supercell: 2 x 4 x 4 shifted Monkhorst-Pack grid

PAW pseudopotentials, GGA treatment of exchange correlation

Where does the displacement lead to?

i4mcm_imaginary_mode__1.6THz_animation.avi

02/12/10 Australian Government

